Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Sleep ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571402

RESUMO

Although genome wide association studies (GWAS) have identified loci for sleep-related traits, they do not directly uncover the underlying causal variants and corresponding effector genes. The majority of such variants reside in non-coding regions and are therefore presumed to impact cis-regulatory elements. Our previously reported 'variant-to-gene mapping' effort in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs), combined with validation in both Drosophila and zebrafish, implicated PIG-Q as a functionally relevant gene at the insomnia 'WDR90' GWAS locus. However, importantly that effort did not characterize the corresponding underlying causal variant. Specifically, our previous 3D genomic datasets nominated a shortlist of three neighboring single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium within an intronic enhancer region of WDR90 that contacted the open PIG-Q promoter. We sought to investigate the influence of these SNPs collectively and then individually on PIG-Q modulation to pinpoint the causal "regulatory" variant. Starting with gross level perturbation, deletion of the entire region in NPCs via CRISPR-Cas9 editing and subsequent RNA sequencing revealed expression changes in specific PIG-Q transcripts. Results from individual luciferase reporter assays for each SNP in iPSCs revealed that the region with the rs3752495 risk allele induced a ~2.5-fold increase in luciferase expression. Importantly, rs3752495 also exhibited an allele specific effect, with the risk allele increasing the luciferase expression by ~2-fold versus the non-risk allele. In conclusion, our variant-to-function approach and in vitro validation implicates rs3752495 as a causal insomnia variant embedded within WDR90 while modulating the expression of the distally located PIG-Q.

2.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352472

RESUMO

Deficits in chemosensory processing are associated with healthy aging, as well as numerous neurodegenerative disorders, including Alzheimer's Disease (AD). In many cases, chemosensory deficits are harbingers of neurodegenerative disease, and understanding the mechanistic basis for these changes may provide insight into the fundamental dysfunction associated with aging and neurodegeneration. The fruit fly, Drosophila melanogaster , is a powerful model for studying chemosensation, aging, and aging-related pathologies, yet the effects of aging and neurodegeneration on chemosensation remain largely unexplored in this model, particularly with respect to taste. To determine whether the effects of aging on taste are conserved in flies, we compared the response of flies to different appetitive tastants. Aging impaired response to sugars, but not medium-chain fatty acids that are sensed by a shared population of neurons, revealing modality-specific deficits in taste. Selective expression of the human amyloid beta (Aß) 1-42 peptide bearing the Arctic mutation (E693E) associated with early onset AD in the neurons that sense sugars and fatty acids phenocopies the effects of aging, suggesting that the age-related decline in response is localized to gustatory neurons. Functional imaging of gustatory axon terminals revealed reduced response to sugar, but not fatty acids. Axonal innervation of the fly taste center was largely intact in aged flies, suggesting that reduced sucrose response does not derive from neurodegeneration. Conversely, expression of the amyloid peptide in sweet-sensing taste neurons resulted in reduced innervation of the primary fly taste center. A comparison of transcript expression within the sugar-sensing taste neurons revealed age-related changes in 66 genes, including a reduction in odorant-binding protein class genes that are also expressed in taste sensilla. Together, these findings suggest that deficits in taste detection may result from signaling pathway-specific changes, while different mechanisms underly taste deficits in aged and AD model flies. Overall, this work provides a model to examine cellular deficits in neural function associated with aging and AD.

3.
PLoS Genet ; 19(12): e1011049, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091360

RESUMO

Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.


Assuntos
Proteínas de Drosophila , Proteínas do Tecido Nervoso , Proteínas Ativadoras de ras GTPase , Sono , Animais , Drosophila melanogaster , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Duração do Sono , Masculino , Encéfalo/metabolismo , Intestinos/metabolismo , Dieta
4.
J Comp Physiol B ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910192

RESUMO

Activity patterns tend to be highly stereotyped and critical for executing many different behaviors including foraging, social interactions, and predator avoidance. Differences in the circadian timing of locomotor activity and rest periods can facilitate habitat partitioning and the exploitation of novel niches. As a consequence, closely related species often display highly divergent activity patterns, suggesting that shifts from diurnal to nocturnal behavior, or vice versa, are critical for survival. In Africa's Lake Malawi alone, there are over 500 species of cichlids, which inhabit diverse environments and exhibit extensive phenotypic variation. We have previously identified a substantial range in activity patterns across adult Lake Malawi cichlid species, from strongly diurnal to strongly nocturnal. In many species, including fishes, ecological pressures differ dramatically across life-history stages, raising the possibility that activity patterns may change over ontogeny. To determine if rest-activity patterns change across life stages, we compared the locomotor patterns of six Lake Malawi cichlid species. While total rest and activity did not change between early juvenile and adult stages, rest-activity patterns did, with juveniles displaying distinct activity rhythms that are more robust than adults. One distinct difference between juveniles and adults is the emergence of complex social behavior. To determine whether social context is required for activity rhythms, we next measured locomotor behavior in group-housed adult fish. We found that when normal social interactions were allowed, locomotor activity patterns were restored, supporting the notion that social interactions promote circadian regulation of activity in adult fish. These findings reveal a previously unidentified link between developmental stage and social interactions in the circadian timing of cichlid activity.

5.
STAR Protoc ; 4(4): 102517, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742184

RESUMO

In this protocol, we describe a comparative approach to study the evolution of brain function in the Mexican tetra, Astyanax mexicanus. We developed surface fish and two independent populations of cavefish with pan-neuronal expression of the Ca2+ sensor GCaMP6s. We describe a methodology to prepare samples and image activity across the optic tectum and olfactory bulb.

6.
iScience ; 26(9): 107431, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636065

RESUMO

Collective motion emerges from individual interactions which produce group-wide patterns in behavior. While adaptive changes to collective motion are observed across animal species, how local interactions change when these collective behaviors evolve is poorly understood. Here, we use the Mexican tetra, Astyanax mexicanus, which exists as a schooling surface form and a non-schooling cave form, to study differences in how fish alter their swimming in response to neighbors across ontogeny and between evolutionarily diverged populations. We find that surface fish undergo a transition to schooling mediated by changes in the way fish modulate speed and turning relative to neighbors. This transition begins with the tendency to align to neighbors emerging by 28 days post-fertilization and ends with the emergence of robust attraction by 70 days post-fertilization. Cavefish exhibit neither alignment nor attraction at any stage of development. These results reveal how evolution alters local interactions to produce striking differences in collective behavior.

7.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645863

RESUMO

Although genome wide association studies (GWAS) have been crucial for the identification of loci associated with sleep traits and disorders, the method itself does not directly uncover the underlying causal variants and corresponding effector genes. The overwhelming majority of such variants reside in non-coding regions and are therefore presumed to impact the activity of cis-regulatory elements, such as enhancers. Our previously reported 'variant-to-gene mapping' effort in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs), combined with validation in both Drosophila and zebrafish, implicated PIG-Q as a functionally relevant gene at the insomnia 'WDR90' locus. However, importantly that effort did not characterize the corresponding underlying causal variant at this GWAS signal. Specifically, our genome-wide ATAC-seq and high-resolution promoter-focused Capture C datasets generated in this cell setting brought our attention to a shortlist of three tightly neighboring single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium in a candidate intronic enhancer region of WDR90 that contacted the open PIG-Q promoter. The objective of this study was to investigate the influence of the proxy SNPs collectively and then individually on PIG-Q modulation and to pinpoint the causal "regulatory" variant among the three SNPs. Starting at a gross level perturbation, deletion of the entire region harboring all three SNPs in human iPSC-derived neural progenitor cells via CRISPR-Cas9 editing and subsequent RNA sequencing revealed expression changes in specific PIG-Q transcripts. Results from more refined individual luciferase reporter assays for each of the three SNPs in iPSCs revealed that the intronic region with the rs3752495 risk allele induced a ~2.5-fold increase in luciferase expression (n=10). Importantly, rs3752495 also exhibited an allele specific effect, with the risk allele increasing the luciferase expression by ~2-fold compared to the non-risk allele. In conclusion, our variant-to-function approach and subsequent in vitro validation implicates rs3752495 as a causal insomnia risk variant embedded at the WDR90-PIG-Q locus.

8.
Elife ; 122023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498318

RESUMO

The vertebrate brain is highly conserved topologically, but less is known about neuroanatomical variation between individual brain regions. Neuroanatomical variation at the regional level is hypothesized to provide functional expansion, building upon ancestral anatomy needed for basic functions. Classically, animal models used to study evolution have lacked tools for detailed anatomical analysis that are widely used in zebrafish and mice, presenting a barrier to studying brain evolution at fine scales. In this study, we sought to investigate the evolution of brain anatomy using a single species of fish consisting of divergent surface and cave morphs, that permits functional genetic testing of regional volume and shape across the entire brain. We generated a high-resolution brain atlas for the blind Mexican cavefish Astyanax mexicanus and coupled the atlas with automated computational tools to directly assess variability in brain region shape and volume across all populations. We measured the volume and shape of every grossly defined neuroanatomical region of the brain and assessed correlations between anatomical regions in surface fish, cavefish, and surface × cave F2 hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted, while ventral regions have expanded, with F2 hybrid data providing support for developmental constraint along the dorsal-ventral axis. Furthermore, these dorsal-ventral relationships in anatomical variation show similar patterns for both volume and shape, suggesting that the anatomical evolution captured by these two parameters could be driven by similar developmental mechanisms. Together, these data demonstrate that A. mexicanus is a powerful system for functionally determining basic principles of brain evolution and will permit testing how genes influence early patterning events to drive brain-wide anatomical evolution.


Assuntos
Evolução Biológica , Characidae , Animais , Camundongos , Peixe-Zebra , Characidae/genética , Encéfalo , Fenótipo
9.
Nat Commun ; 14(1): 2557, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137902

RESUMO

Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra, Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur.


Assuntos
Characidae , Animais , Characidae/genética , Mutação , Fenótipo , Adaptação Fisiológica/genética , Genótipo , Evolução Biológica , Cavernas
10.
Curr Biol ; 33(10): R420-R423, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220738

RESUMO

Sleep is regulated by many environmental factors including food availability and exposure to sensory stimuli. A recent study identifies a gut-brain axis that is activated by dietary proteins and inhibits sensory responsiveness, allowing animals to enter and maintain deep sleep.


Assuntos
Alimentos , Sono , Animais
11.
Zebrafish ; 20(2): 86-94, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071855

RESUMO

Animal model systems are dependent on the standardization of husbandry protocols that maximize growth and reduce generation time. The Mexican tetra, Astyanax mexicanus, exists as eyed surface and blind cave dwelling populations. The opportunity for comparative approaches between independently evolved populations has led to the rapid growth of A. mexicanus as a model for evolution and biomedical research. However, a slow and inconsistent growth rate remains a major limitation to the expanded application of A. mexicanus. Fortunately, this temporal limitation can be addressed through husbandry changes that accelerate growth rates while maintaining optimal health outcomes. Here, we describe a husbandry protocol that produces rapid growth rates through changes in diet, feeding frequency, growth sorting and progressive changes in tank size. This protocol produced robust growth rates and decreased the age of sexual maturity in comparison to our previous protocol. To determine whether changes in feeding impacted behavior, we tested fish in exploration and schooling assays. We found no difference in behavior between the two groups, suggesting that increased feeding and rapid growth will not impact the natural variation in behavioral traits. Taken together, this standardized husbandry protocol will accelerate the development of A. mexicanus as a genetic model.


Assuntos
Characidae , Maturidade Sexual , Animais , Evolução Biológica , Peixe-Zebra , Characidae/genética , Comportamento Alimentar
12.
CBE Life Sci Educ ; 22(2): ar25, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058442

RESUMO

In-person undergraduate research experiences (UREs) promote students' integration into careers in life science research. In 2020, the COVID-19 pandemic prompted institutions hosting summer URE programs to offer them remotely, raising questions about whether undergraduates who participate in remote research can experience scientific integration and whether they might perceive doing research less favorably (i.e., not beneficial or too costly). To address these questions, we examined indicators of scientific integration and perceptions of the benefits and costs of doing research among students who participated in remote life science URE programs in Summer 2020. We found that students experienced gains in scientific self-efficacy pre- to post-URE, similar to results reported for in-person UREs. We also found that students experienced gains in scientific identity, graduate and career intentions, and perceptions of the benefits of doing research only if they started their remote UREs at lower levels on these variables. Collectively, students did not change in their perceptions of the costs of doing research despite the challenges of working remotely. Yet students who started with low cost perceptions increased in these perceptions. These findings indicate that remote UREs can support students' self-efficacy development, but may otherwise be limited in their potential to promote scientific integration.


Assuntos
COVID-19 , Estudantes , Humanos , Pandemias
13.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034671

RESUMO

Collective motion emerges from individual interactions which produce groupwide patterns in behavior. While adaptive changes to collective motion are observed across animal species, how local interactions change when these collective behaviors evolve is poorly understood. Here, we use the Mexican tetra, A. mexicanus, which exists as a schooling surface form and a non-schooling cave form, to study differences in how fish alter their swimming in response to neighbors across ontogeny and between evolutionarily diverged populations. We find that surface fish undergo a transition to schooling during development that occurs through increases in inter-individual alignment and attraction mediated by changes in the way fish modulate speed and turning relative to neighbors. Cavefish, which have evolved loss of schooling, exhibit neither of these schooling-promoting interactions at any stage of development. These results reveal how evolution alters local interaction rules to produce striking differences in collective behavior.

14.
Cold Spring Harb Protoc ; 2023(6): pdb.prot108093, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787963

RESUMO

The ability to modify behavior as a result of previous experience allows an organism to adapt to changes in its environment. Even innate behaviors, like feeding initiation, can change if previously associated with a noxious stimulus. Here, we describe a taste memory assay pairing appetitive and bitter tastants, resulting in aversive taste conditioning. By training a fly to associate sweet sucrose applied to the tarsus with bitter quinine applied to the proboscis, flies quickly learn to suppress the reflexive proboscis extension to sucrose, providing a bioassay for behavioral and molecular plasticity. This single-fly taste memory assay may be applied to adult Drosophila of any genetic background and allows for interrogation of the neural circuitry and molecular processes encoding memories while simultaneously measuring behavior. Unlike many other memory assays, this system requires few custom components, and therefore can be easily established in laboratories with minimal expertise in the study of fly behavior.


Assuntos
Drosophila , Paladar , Animais , Percepção Gustatória , Sacarose , Drosophila melanogaster
15.
Cold Spring Harb Protoc ; 2023(6): pdb.top107864, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787965

RESUMO

Peripheral detection of tastants allows animals to detect the dietary value of food and its potential toxicity. Many tastants such as sugars and fats elicit reflexive appetitive responses, whereas other foods such as quinine induce aversion. The relative value of food can change in accordance with an animal's internal state and prior experience. Understanding the neural and genetic bases for the detection and response to tastants, as well as how these behaviors change with experience, is central to sensory neuroscience. The presentation of attractive tastants to the proboscis or legs of the fruit fly Drosophila melanogaster induces a robust and reflexive proboscis-extension response (PER). This quantifiable response can be used to study the receptors underlying taste detection, the neural circuits involved in sensory processing, and the musculature required for a simple feeding behavior. Furthermore, we have developed a memory assay pairing appetitive and bitter tastants, resulting in aversive taste conditioning, in which the PER response to attractive tastants is diminished. Unlike many memory assays, this assay does not require specialized equipment and can be readily implemented in teaching and research laboratories. Here, we introduce protocols for studying the PER feeding response and aversive taste memory in Drosophila.


Assuntos
Drosophila , Paladar , Animais , Paladar/genética , Drosophila melanogaster/genética , Percepção Gustatória/genética , Comportamento Alimentar/fisiologia
16.
Cold Spring Harb Protoc ; 2023(6): pdb.prot108092, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787966

RESUMO

The ability to distinguish between food sources that are good and provide nutrients and those that are potentially dangerous is crucial to the survival of an organism. Here, we describe a taste assay that measures the reflexive feeding response to a given tastant. To examine taste preference for a soluble compound, an appetitive tastant is applied to the proboscis, and the proportion of proboscis extensions are recorded. This single-fly assay may be applied to adult Drosophila of any genetic background and facilities examination of the neural circuitry and molecular processes encoding the reflexive taste response. Furthermore, this assay requires few custom components and therefore can be easily established in laboratories with minimal expertise in the study of fly behavior.


Assuntos
Drosophila , Paladar , Animais , Paladar/fisiologia , Percepção Gustatória/fisiologia , Comportamento Alimentar/fisiologia , Bioensaio , Drosophila melanogaster
17.
Sci Adv ; 9(1): eabq0844, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608130

RESUMO

Genome-wide association studies (GWAS) in humans have identified loci robustly associated with several heritable diseases or traits, yet little is known about the functional roles of the underlying causal variants in regulating sleep duration or quality. We applied an ATAC-seq/promoter focused Capture C strategy in human iPSC-derived neural progenitors to carry out a "variant-to-gene" mapping campaign that identified 88 candidate sleep effector genes connected to relevant GWAS signals. To functionally validate the role of the implicated effector genes in sleep regulation, we performed a neuron-specific RNA interference screen in the fruit fly, Drosophila melanogaster, followed by validation in zebrafish. This approach identified a number of genes that regulate sleep including a critical role for glycosylphosphatidylinositol (GPI)-anchor biosynthesis. These results provide the first physical variant-to-gene mapping of human sleep genes followed by a model organism-based prioritization, revealing a conserved role for GPI-anchor biosynthesis in sleep regulation.


Assuntos
Drosophila melanogaster , Glicosilfosfatidilinositóis , Animais , Humanos , Glicosilfosfatidilinositóis/genética , Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla/métodos , Peixe-Zebra/genética , Mapeamento Cromossômico , Testes Genéticos , Sono/genética
18.
BMC Ecol Evol ; 22(1): 116, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241984

RESUMO

BACKGROUND: Aggression is observed across the animal kingdom, and benefits animals in a number of ways to increase fitness and promote survival. While aggressive behaviors vary widely across populations and can evolve as an adaptation to a particular environment, the complexity of aggressive behaviors presents a challenge to studying the evolution of aggression. The Mexican tetra, Astyanax mexicanus exists as an aggressive river-dwelling surface form and multiple populations of a blind cave form, some of which exhibit reduced aggression, providing the opportunity to investigate how evolution shapes aggressive behaviors. RESULTS: To define how aggressive behaviors evolve, we performed a high-resolution analysis of multiple social behaviors that occur during aggressive interactions in A. mexicanus. We found that many of the aggression-associated behaviors observed in surface-surface aggressive encounters were reduced or lost in Pachón cavefish. Interestingly, one behavior, circling, was observed more often in cavefish, suggesting evolution of a shift in the types of social behaviors exhibited by cavefish. Further, detailed analysis revealed substantive differences in aggression-related sub-behaviors in independently evolved cavefish populations, suggesting independent evolution of reduced aggression between cave populations. We found that many aggressive behaviors are still present when surface fish fight in the dark, suggesting that these reductions in aggression-associated and escape-associated behaviors in cavefish are likely independent of loss of vision in this species. Further, levels of aggression within populations were largely independent of type of opponent (cave vs. surface) or individual stress levels, measured through quantifying stress-like behaviors, suggesting these behaviors are hardwired and not reflective of population-specific changes in other cave-evolved traits. CONCLUSION: These results reveal that loss of aggression in cavefish evolved through the loss of multiple aggression-associated behaviors and raise the possibility that independent genetic mechanisms underlie changes in each behavior within populations and across populations. Taken together, these findings reveal the complexity of evolution of social behaviors and establish A. mexicanus as a model for investigating the evolutionary and genetic basis of aggressive behavior.


Assuntos
Characidae , Adaptação Fisiológica , Agressão , Animais , Cavernas , Characidae/genética , Fenótipo
19.
Curr Biol ; 32(18): R949-R952, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36167042

RESUMO

Regulation of water intake is governed by numerous motivated behaviors that are critical for the survival of nearly all animals. A recent study identifies a critical role for glia-neuron communication in the detection of water shortage and the initiation of thirst-associated behaviors.


Assuntos
Ingestão de Líquidos , Sede , Animais , Biologia , Ingestão de Líquidos/fisiologia , Neuroglia , Sede/fisiologia , Água
20.
Evol Dev ; 24(5): 127-130, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971632

RESUMO

There is widespread recognition of the need to increase research opportunities in biomedical science for undergraduate students from underrepresented backgrounds. Here, we describe the implementation of team-based science combined with intensive mentoring to conduct a large-scale project examining the evolution of behavior. This system can be widely applied in other areas of STEM to promote research-intensive opportunities in STEM fields and to promote diversity in science.


Assuntos
Diversidade Cultural , Ciência , Estudantes , Currículo , Humanos , Pesquisa , Ciência/educação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA